基于TK1 & Manifold的实时目标检测(HOG+SVM代码详解)

Author Avatar
开坦克的贝塔 4月 17, 2017
  • 在其它设备中阅读本文章

在前文中,我们对HOG+SVM算法应用于目标实时检测给出了简单的理论介绍,本文将从实践出发,在TK1(Manifold)使用OpenCV完成目标检测。
安装环境请参考前面的文章。本例中使用环境为CUDA-6.5和OpenCV-3.1.0。

训练前期准备

收集训练图片及图像预处理

收集大量目标样本图片,注意以下两点。
在正样本图片中尽量不要出现其他干扰因素。
正样本图像尺寸比例尽量与实际目标比例相等。

收集背景图片(负样本),注意背景图片尺寸必须一致,背景图片中不能出现目标。

用Python对正样本进行Resize:

1
2
3
4
5
6
7
8
9
10
11
import PIL
from PIL import Image
import os
#正样本图片路径
path = "posImgs/"
files = os.listdir(path)
for name in files:
img = Image.open(path+name)
img = img.resize((80, 80), PIL.Image.ANTIALIAS)
img.save(name)

使用OpenCV训练SVM分类器

在工程目录下建立pos文件夹用于放置所有Resize过的正样本图片,建立neg放置所有负样本图片。
创建train.cpp以及CMakeLists.txt。

train.cpp 代码如下
使用时请在main函数中修改训练样本路径

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#include <opencv2/opencv.hpp>
#include <iostream>
#include <time.h>
#define _DEBUG false
using namespace cv;
using namespace cv::ml;
using namespace std;
void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector );
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData );
void load_images( const string & prefix, vector< Mat > & img_lst );
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorValues, const Size & size );
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size );
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels );
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color );
void test_it( const Size & size );
void get_svm_detector(const Ptr<SVM>& svm, vector< float > & hog_detector )
{
// get the support vectors
Mat sv = svm->getSupportVectors();
const int sv_total = sv.rows;
// get the decision function
Mat alpha, svidx;
double rho = svm->getDecisionFunction(0, alpha, svidx);
CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 );
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) );
CV_Assert( sv.type() == CV_32F );
hog_detector.clear();
hog_detector.resize(sv.cols + 1);
memcpy(&hog_detector[0], sv.ptr(), sv.cols*sizeof(hog_detector[0]));
hog_detector[sv.cols] = (float)-rho;
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
{
//--Convert data
const int rows = (int)train_samples.size();
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
trainData = cv::Mat(rows, cols, CV_32FC1 );
vector< Mat >::const_iterator itr = train_samples.begin();
vector< Mat >::const_iterator end = train_samples.end();
for( int i = 0 ; itr != end ; ++itr, ++i )
{
CV_Assert( itr->cols == 1 ||
itr->rows == 1 );
if( itr->cols == 1 )
{
transpose( *(itr), tmp );
tmp.copyTo( trainData.row( i ) );
}
else if( itr->rows == 1 )
{
itr->copyTo( trainData.row( i ) );
}
}
}
void load_images( const string & prefix, vector< Mat > & img_lst )
{
vector<String> files;
glob(prefix, files);
for (size_t i = 0; i < files.size(); ++i)
{
Mat img = imread(files[i]); // load the image
if (img.empty()) // invalid image, just skip it.
{
cout << files[i] << " is invalid!" << endl;
continue;
}
#ifdef _DEBUG
imshow("image", img);
waitKey(10);
#endif
img_lst.push_back(img);
}
}
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
{
Rect box;
box.width = size.width;
box.height = size.height;
const int size_x = box.width;
const int size_y = box.height;
srand( (unsigned int)time( NULL ) );
vector< Mat >::const_iterator img = full_neg_lst.begin();
vector< Mat >::const_iterator end = full_neg_lst.end();
for( ; img != end ; ++img )
{
box.x = rand() % (img->cols - size_x);
box.y = rand() % (img->rows - size_y);
Mat roi = (*img)(box);
neg_lst.push_back( roi.clone() );
imshow( "img", roi.clone() );
waitKey(0);
}
}
// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization
Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorValues, const Size & size )
{
const int DIMX = size.width;
const int DIMY = size.height;
float zoomFac = 3;
Mat visu;
resize(color_origImg, visu, Size( (int)(color_origImg.cols*zoomFac), (int)(color_origImg.rows*zoomFac) ) );
int cellSize = 8;
int gradientBinSize = 9;
float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180 into 9 bins, how large (in rad) is one bin?
// prepare data structure: 9 orientation / gradient strenghts for each cell
int cells_in_x_dir = DIMX / cellSize;
int cells_in_y_dir = DIMY / cellSize;
float*** gradientStrengths = new float**[cells_in_y_dir];
int** cellUpdateCounter = new int*[cells_in_y_dir];
for (int y=0; y<cells_in_y_dir; y++)
{
gradientStrengths[y] = new float*[cells_in_x_dir];
cellUpdateCounter[y] = new int[cells_in_x_dir];
for (int x=0; x<cells_in_x_dir; x++)
{
gradientStrengths[y][x] = new float[gradientBinSize];
cellUpdateCounter[y][x] = 0;
for (int bin=0; bin<gradientBinSize; bin++)
gradientStrengths[y][x][bin] = 0.0;
}
}
// nr of blocks = nr of cells - 1
// since there is a new block on each cell (overlapping blocks!) but the last one
int blocks_in_x_dir = cells_in_x_dir - 1;
int blocks_in_y_dir = cells_in_y_dir - 1;
// compute gradient strengths per cell
int descriptorDataIdx = 0;
int cellx = 0;
int celly = 0;
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
{
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
{
// 4 cells per block ...
for (int cellNr=0; cellNr<4; cellNr++)
{
// compute corresponding cell nr
cellx = blockx;
celly = blocky;
if (cellNr==1) celly++;
if (cellNr==2) cellx++;
if (cellNr==3)
{
cellx++;
celly++;
}
for (int bin=0; bin<gradientBinSize; bin++)
{
float gradientStrength = descriptorValues[ descriptorDataIdx ];
descriptorDataIdx++;
gradientStrengths[celly][cellx][bin] += gradientStrength;
} // for (all bins)
// note: overlapping blocks lead to multiple updates of this sum!
// we therefore keep track how often a cell was updated,
// to compute average gradient strengths
cellUpdateCounter[celly][cellx]++;
} // for (all cells)
} // for (all block x pos)
} // for (all block y pos)
// compute average gradient strengths
for (celly=0; celly<cells_in_y_dir; celly++)
{
for (cellx=0; cellx<cells_in_x_dir; cellx++)
{
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
// compute average gradient strenghts for each gradient bin direction
for (int bin=0; bin<gradientBinSize; bin++)
{
gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell;
}
}
}
// draw cells
for (celly=0; celly<cells_in_y_dir; celly++)
{
for (cellx=0; cellx<cells_in_x_dir; cellx++)
{
int drawX = cellx * cellSize;
int drawY = celly * cellSize;
int mx = drawX + cellSize/2;
int my = drawY + cellSize/2;
rectangle(visu, Point((int)(drawX*zoomFac), (int)(drawY*zoomFac)), Point((int)((drawX+cellSize)*zoomFac), (int)((drawY+cellSize)*zoomFac)), Scalar(100,100,100), 1);
// draw in each cell all 9 gradient strengths
for (int bin=0; bin<gradientBinSize; bin++)
{
float currentGradStrength = gradientStrengths[celly][cellx][bin];
// no line to draw?
if (currentGradStrength==0)
continue;
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
float dirVecX = cos( currRad );
float dirVecY = sin( currRad );
float maxVecLen = (float)(cellSize/2.f);
float scale = 2.5; // just a visualization scale, to see the lines better
// compute line coordinates
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
// draw gradient visualization
line(visu, Point((int)(x1*zoomFac),(int)(y1*zoomFac)), Point((int)(x2*zoomFac),(int)(y2*zoomFac)), Scalar(0,255,0), 1);
} // for (all bins)
} // for (cellx)
} // for (celly)
// don't forget to free memory allocated by helper data structures!
for (int y=0; y<cells_in_y_dir; y++)
{
for (int x=0; x<cells_in_x_dir; x++)
{
delete[] gradientStrengths[y][x];
}
delete[] gradientStrengths[y];
delete[] cellUpdateCounter[y];
}
delete[] gradientStrengths;
delete[] cellUpdateCounter;
return visu;
} // get_hogdescriptor_visu
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
{
HOGDescriptor hog;
hog.winSize = size;
Mat gray;
vector< Point > location;
vector< float > descriptors;
vector< Mat >::const_iterator img = img_lst.begin();
vector< Mat >::const_iterator end = img_lst.end();
for( ; img != end ; ++img )
{
cvtColor( *img, gray, COLOR_BGR2GRAY );
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location );
gradient_lst.push_back( Mat( descriptors ).clone() );
imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) );
waitKey( 0 );
}
}
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
{
Mat train_data;
convert_to_ml( gradient_lst, train_data );
clog << "Start training...";
Ptr<SVM> svm = SVM::create();
/* Default values to train SVM */
svm->setCoef0(0.0);
svm->setDegree(3);
svm->setTermCriteria(TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, 1e-3 ));
svm->setGamma(0);
svm->setKernel(SVM::LINEAR);
svm->setNu(0.5);
svm->setP(0.1); // for EPSILON_SVR, epsilon in loss function?
svm->setC(0.01); // From paper, soft classifier
svm->setType(SVM::EPS_SVR); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm->train(train_data, ROW_SAMPLE, Mat(labels));
clog << "...[done]" << endl;
svm->save( "armour.yml" );
}
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color )
{
if( !locations.empty() )
{
vector< Rect >::const_iterator loc = locations.begin();
vector< Rect >::const_iterator end = locations.end();
for( ; loc != end ; ++loc )
{
rectangle( img, *loc, color, 2 );
}
}
}
int main( int argc, char** argv )
{
vector< Mat > pos_lst;
vector< Mat > full_neg_lst;
vector< Mat > neg_lst;
vector< Mat > gradient_lst;
vector< int > labels;
string pos_dir = "/home/sunny/HOG/HOG_train/pos/";
string neg_dir = "/home/sunny/HOG/HOG_train/neg/";
cout << "positive images are being loaded." << endl;
load_images( pos_dir, pos_lst );
Size pos_image_size = pos_lst[0].size();
for (size_t i = 0; i < pos_lst.size(); ++i)
{
if( pos_lst[i].size() != pos_image_size)
{
cout << "All positive images should be same size!" << endl;
exit( -1 );
}
}
labels.assign( pos_lst.size(), +1 );
const unsigned int old = (unsigned int)labels.size();
cout << "negative images are being loaded." << endl;
load_images( neg_dir, full_neg_lst );
sample_neg( full_neg_lst, neg_lst, pos_image_size );
cout << "negative images have finished." << endl;
labels.insert( labels.end(), neg_lst.size(), -1 );
CV_Assert( old < labels.size() );
compute_hog( pos_lst, gradient_lst, pos_image_size );
compute_hog( neg_lst, gradient_lst, pos_image_size );
train_svm( gradient_lst, labels );
return 0;
}

CMakeLists.txt

1
2
3
4
5
6
7
project (train)
set(SRC_LIST train.cpp)
find_package( OpenCV 3.1 REQUIRED )
set(SOURCE_FILES train.cpp)
add_executable(train ${SOURCE_FILES})
target_link_libraries(train ${OpenCV_LIBS})

准备好上述文件后执行

1
2
3
$ cmake -D CMAKE_BUILD_TYPE=RELESE .
$ make
$ ./train

运行结束后将得到一个.yml文件,该文件即为我们训练好的SVM分类器。